관리-도구
편집 파일: hashtable.h
// Hashtable implementation used by containers -*- C++ -*- // Copyright (C) 2001-2013 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ /** @file backward/hashtable.h * This file is a GNU extension to the Standard C++ Library (possibly * containing extensions from the HP/SGI STL subset). */ #ifndef _BACKWARD_HASHTABLE_H #define _BACKWARD_HASHTABLE_H 1 // Hashtable class, used to implement the hashed associative containers // hash_set, hash_map, hash_multiset, and hash_multimap. #include <vector> #include <iterator> #include <algorithm> #include <bits/stl_function.h> #include <backward/hash_fun.h> namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION using std::size_t; using std::ptrdiff_t; using std::forward_iterator_tag; using std::input_iterator_tag; using std::_Construct; using std::_Destroy; using std::distance; using std::vector; using std::pair; using std::__iterator_category; template<class _Val> struct _Hashtable_node { _Hashtable_node* _M_next; _Val _M_val; }; template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc = std::allocator<_Val> > class hashtable; template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_iterator; template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_const_iterator; template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_iterator { typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> _Hashtable; typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef _Val& reference; typedef _Val* pointer; _Node* _M_cur; _Hashtable* _M_ht; _Hashtable_iterator(_Node* __n, _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) { } _Hashtable_iterator() { } reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } iterator& operator++(); iterator operator++(int); bool operator==(const iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const iterator& __it) const { return _M_cur != __it._M_cur; } }; template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_const_iterator { typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> _Hashtable; typedef _Hashtable_iterator<_Val,_Key,_HashFcn, _ExtractKey,_EqualKey,_Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef const _Val& reference; typedef const _Val* pointer; const _Node* _M_cur; const _Hashtable* _M_ht; _Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) { } _Hashtable_const_iterator() { } _Hashtable_const_iterator(const iterator& __it) : _M_cur(__it._M_cur), _M_ht(__it._M_ht) { } reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } const_iterator& operator++(); const_iterator operator++(int); bool operator==(const const_iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const const_iterator& __it) const { return _M_cur != __it._M_cur; } }; // Note: assumes long is at least 32 bits. enum { _S_num_primes = 29 }; template<typename _PrimeType> struct _Hashtable_prime_list { static const _PrimeType __stl_prime_list[_S_num_primes]; static const _PrimeType* _S_get_prime_list(); }; template<typename _PrimeType> const _PrimeType _Hashtable_prime_list<_PrimeType>::__stl_prime_list[_S_num_primes] = { 5ul, 53ul, 97ul, 193ul, 389ul, 769ul, 1543ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul }; template<class _PrimeType> inline const _PrimeType* _Hashtable_prime_list<_PrimeType>::_S_get_prime_list() { return __stl_prime_list; } inline unsigned long __stl_next_prime(unsigned long __n) { const unsigned long* __first = _Hashtable_prime_list<unsigned long>::_S_get_prime_list(); const unsigned long* __last = __first + (int)_S_num_primes; const unsigned long* pos = std::lower_bound(__first, __last, __n); return pos == __last ? *(__last - 1) : *pos; } // Forward declaration of operator==. template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> class hashtable; template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2); // Hashtables handle allocators a bit differently than other // containers do. If we're using standard-conforming allocators, then // a hashtable unconditionally has a member variable to hold its // allocator, even if it so happens that all instances of the // allocator type are identical. This is because, for hashtables, // this extra storage is negligible. Additionally, a base class // wouldn't serve any other purposes; it wouldn't, for example, // simplify the exception-handling code. template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> class hashtable { public: typedef _Key key_type; typedef _Val value_type; typedef _HashFcn hasher; typedef _EqualKey key_equal; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; hasher hash_funct() const { return _M_hash; } key_equal key_eq() const { return _M_equals; } private: typedef _Hashtable_node<_Val> _Node; public: typedef typename _Alloc::template rebind<value_type>::other allocator_type; allocator_type get_allocator() const { return _M_node_allocator; } private: typedef typename _Alloc::template rebind<_Node>::other _Node_Alloc; typedef typename _Alloc::template rebind<_Node*>::other _Nodeptr_Alloc; typedef vector<_Node*, _Nodeptr_Alloc> _Vector_type; _Node_Alloc _M_node_allocator; _Node* _M_get_node() { return _M_node_allocator.allocate(1); } void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); } private: hasher _M_hash; key_equal _M_equals; _ExtractKey _M_get_key; _Vector_type _M_buckets; size_type _M_num_elements; public: typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; friend struct _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>; friend struct _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>; public: hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const _ExtractKey& __ext, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(__ext), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(_ExtractKey()), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(const hashtable& __ht) : _M_node_allocator(__ht.get_allocator()), _M_hash(__ht._M_hash), _M_equals(__ht._M_equals), _M_get_key(__ht._M_get_key), _M_buckets(__ht.get_allocator()), _M_num_elements(0) { _M_copy_from(__ht); } hashtable& operator= (const hashtable& __ht) { if (&__ht != this) { clear(); _M_hash = __ht._M_hash; _M_equals = __ht._M_equals; _M_get_key = __ht._M_get_key; _M_copy_from(__ht); } return *this; } ~hashtable() { clear(); } size_type size() const { return _M_num_elements; } size_type max_size() const { return size_type(-1); } bool empty() const { return size() == 0; } void swap(hashtable& __ht) { std::swap(_M_hash, __ht._M_hash); std::swap(_M_equals, __ht._M_equals); std::swap(_M_get_key, __ht._M_get_key); _M_buckets.swap(__ht._M_buckets); std::swap(_M_num_elements, __ht._M_num_elements); } iterator begin() { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return iterator(_M_buckets[__n], this); return end(); } iterator end() { return iterator(0, this); } const_iterator begin() const { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return const_iterator(_M_buckets[__n], this); return end(); } const_iterator end() const { return const_iterator(0, this); } template<class _Vl, class _Ky, class _HF, class _Ex, class _Eq, class _Al> friend bool operator==(const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&, const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&); public: size_type bucket_count() const { return _M_buckets.size(); } size_type max_bucket_count() const { return _Hashtable_prime_list<unsigned long>:: _S_get_prime_list()[(int)_S_num_primes - 1]; } size_type elems_in_bucket(size_type __bucket) const { size_type __result = 0; for (_Node* __n = _M_buckets[__bucket]; __n; __n = __n->_M_next) __result += 1; return __result; } pair<iterator, bool> insert_unique(const value_type& __obj) { resize(_M_num_elements + 1); return insert_unique_noresize(__obj); } iterator insert_equal(const value_type& __obj) { resize(_M_num_elements + 1); return insert_equal_noresize(__obj); } pair<iterator, bool> insert_unique_noresize(const value_type& __obj); iterator insert_equal_noresize(const value_type& __obj); template<class _InputIterator> void insert_unique(_InputIterator __f, _InputIterator __l) { insert_unique(__f, __l, __iterator_category(__f)); } template<class _InputIterator> void insert_equal(_InputIterator __f, _InputIterator __l) { insert_equal(__f, __l, __iterator_category(__f)); } template<class _InputIterator> void insert_unique(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_unique(*__f); } template<class _InputIterator> void insert_equal(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_equal(*__f); } template<class _ForwardIterator> void insert_unique(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = distance(__f, __l); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_unique_noresize(*__f); } template<class _ForwardIterator> void insert_equal(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = distance(__f, __l); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_equal_noresize(*__f); } reference find_or_insert(const value_type& __obj); iterator find(const key_type& __key) { size_type __n = _M_bkt_num_key(__key); _Node* __first; for (__first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) { } return iterator(__first, this); } const_iterator find(const key_type& __key) const { size_type __n = _M_bkt_num_key(__key); const _Node* __first; for (__first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) { } return const_iterator(__first, this); } size_type count(const key_type& __key) const { const size_type __n = _M_bkt_num_key(__key); size_type __result = 0; for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), __key)) ++__result; return __result; } pair<iterator, iterator> equal_range(const key_type& __key); pair<const_iterator, const_iterator> equal_range(const key_type& __key) const; size_type erase(const key_type& __key); void erase(const iterator& __it); void erase(iterator __first, iterator __last); void erase(const const_iterator& __it); void erase(const_iterator __first, const_iterator __last); void resize(size_type __num_elements_hint); void clear(); private: size_type _M_next_size(size_type __n) const { return __stl_next_prime(__n); } void _M_initialize_buckets(size_type __n) { const size_type __n_buckets = _M_next_size(__n); _M_buckets.reserve(__n_buckets); _M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0); _M_num_elements = 0; } size_type _M_bkt_num_key(const key_type& __key) const { return _M_bkt_num_key(__key, _M_buckets.size()); } size_type _M_bkt_num(const value_type& __obj) const { return _M_bkt_num_key(_M_get_key(__obj)); } size_type _M_bkt_num_key(const key_type& __key, size_t __n) const { return _M_hash(__key) % __n; } size_type _M_bkt_num(const value_type& __obj, size_t __n) const { return _M_bkt_num_key(_M_get_key(__obj), __n); } _Node* _M_new_node(const value_type& __obj) { _Node* __n = _M_get_node(); __n->_M_next = 0; __try { this->get_allocator().construct(&__n->_M_val, __obj); return __n; } __catch(...) { _M_put_node(__n); __throw_exception_again; } } void _M_delete_node(_Node* __n) { this->get_allocator().destroy(&__n->_M_val); _M_put_node(__n); } void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last); void _M_erase_bucket(const size_type __n, _Node* __last); void _M_copy_from(const hashtable& __ht); }; template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>& _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> inline _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All> _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++(int) { iterator __tmp = *this; ++*this; return __tmp; } template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>& _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> inline _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All> _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++(int) { const_iterator __tmp = *this; ++*this; return __tmp; } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2) { typedef typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::_Node _Node; if (__ht1._M_buckets.size() != __ht2._M_buckets.size()) return false; for (size_t __n = 0; __n < __ht1._M_buckets.size(); ++__n) { _Node* __cur1 = __ht1._M_buckets[__n]; _Node* __cur2 = __ht2._M_buckets[__n]; // Check same length of lists for (; __cur1 && __cur2; __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next) { } if (__cur1 || __cur2) return false; // Now check one's elements are in the other for (__cur1 = __ht1._M_buckets[__n] ; __cur1; __cur1 = __cur1->_M_next) { bool _found__cur1 = false; for (__cur2 = __ht2._M_buckets[__n]; __cur2; __cur2 = __cur2->_M_next) { if (__cur1->_M_val == __cur2->_M_val) { _found__cur1 = true; break; } } if (!_found__cur1) return false; } } return true; } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline bool operator!=(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2) { return !(__ht1 == __ht2); } template<class _Val, class _Key, class _HF, class _Extract, class _EqKey, class _All> inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1, hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) { __ht1.swap(__ht2); } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator, bool> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: insert_unique_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return pair<iterator, bool>(iterator(__cur, this), false); _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return pair<iterator, bool>(iterator(__tmp, this), true); } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: insert_equal_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) { _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __cur->_M_next; __cur->_M_next = __tmp; ++_M_num_elements; return iterator(__tmp, this); } _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return iterator(__tmp, this); } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::reference hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: find_or_insert(const value_type& __obj) { resize(_M_num_elements + 1); size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return __cur->_M_val; _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return __tmp->_M_val; } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator, typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: equal_range(const key_type& __key) { typedef pair<iterator, iterator> _Pii; const size_type __n = _M_bkt_num_key(__key); for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(iterator(__first, this), iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(iterator(__first, this), iterator(_M_buckets[__m], this)); return _Pii(iterator(__first, this), end()); } return _Pii(end(), end()); } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::const_iterator, typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::const_iterator> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: equal_range(const key_type& __key) const { typedef pair<const_iterator, const_iterator> _Pii; const size_type __n = _M_bkt_num_key(__key); for (const _Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) { if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (const _Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(const_iterator(__first, this), const_iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(const_iterator(__first, this), const_iterator(_M_buckets[__m], this)); return _Pii(const_iterator(__first, this), end()); } } return _Pii(end(), end()); } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::size_type hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const key_type& __key) { const size_type __n = _M_bkt_num_key(__key); _Node* __first = _M_buckets[__n]; _Node* __saved_slot = 0; size_type __erased = 0; if (__first) { _Node* __cur = __first; _Node* __next = __cur->_M_next; while (__next) { if (_M_equals(_M_get_key(__next->_M_val), __key)) { if (&_M_get_key(__next->_M_val) != &__key) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; ++__erased; --_M_num_elements; } else { __saved_slot = __cur; __cur = __next; __next = __cur->_M_next; } } else { __cur = __next; __next = __cur->_M_next; } } bool __delete_first = _M_equals(_M_get_key(__first->_M_val), __key); if (__saved_slot) { __next = __saved_slot->_M_next; __saved_slot->_M_next = __next->_M_next; _M_delete_node(__next); ++__erased; --_M_num_elements; } if (__delete_first) { _M_buckets[__n] = __first->_M_next; _M_delete_node(__first); ++__erased; --_M_num_elements; } } return __erased; } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const iterator& __it) { _Node* __p = __it._M_cur; if (__p) { const size_type __n = _M_bkt_num(__p->_M_val); _Node* __cur = _M_buckets[__n]; if (__cur == __p) { _M_buckets[__n] = __cur->_M_next; _M_delete_node(__cur); --_M_num_elements; } else { _Node* __next = __cur->_M_next; while (__next) { if (__next == __p) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); --_M_num_elements; break; } else { __cur = __next; __next = __cur->_M_next; } } } } } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(iterator __first, iterator __last) { size_type __f_bucket = __first._M_cur ? _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size(); size_type __l_bucket = __last._M_cur ? _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size(); if (__first._M_cur == __last._M_cur) return; else if (__f_bucket == __l_bucket) _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur); else { _M_erase_bucket(__f_bucket, __first._M_cur, 0); for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n) _M_erase_bucket(__n, 0); if (__l_bucket != _M_buckets.size()) _M_erase_bucket(__l_bucket, __last._M_cur); } } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const_iterator __first, const_iterator __last) { erase(iterator(const_cast<_Node*>(__first._M_cur), const_cast<hashtable*>(__first._M_ht)), iterator(const_cast<_Node*>(__last._M_cur), const_cast<hashtable*>(__last._M_ht))); } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const const_iterator& __it) { erase(iterator(const_cast<_Node*>(__it._M_cur), const_cast<hashtable*>(__it._M_ht))); } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: resize(size_type __num_elements_hint) { const size_type __old_n = _M_buckets.size(); if (__num_elements_hint > __old_n) { const size_type __n = _M_next_size(__num_elements_hint); if (__n > __old_n) { _Vector_type __tmp(__n, (_Node*)(0), _M_buckets.get_allocator()); __try { for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) { _Node* __first = _M_buckets[__bucket]; while (__first) { size_type __new_bucket = _M_bkt_num(__first->_M_val, __n); _M_buckets[__bucket] = __first->_M_next; __first->_M_next = __tmp[__new_bucket]; __tmp[__new_bucket] = __first; __first = _M_buckets[__bucket]; } } _M_buckets.swap(__tmp); } __catch(...) { for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) { while (__tmp[__bucket]) { _Node* __next = __tmp[__bucket]->_M_next; _M_delete_node(__tmp[__bucket]); __tmp[__bucket] = __next; } } __throw_exception_again; } } } } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last) { _Node* __cur = _M_buckets[__n]; if (__cur == __first) _M_erase_bucket(__n, __last); else { _Node* __next; for (__next = __cur->_M_next; __next != __first; __cur = __next, __next = __cur->_M_next) ; while (__next != __last) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; --_M_num_elements; } } } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_erase_bucket(const size_type __n, _Node* __last) { _Node* __cur = _M_buckets[__n]; while (__cur != __last) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; _M_buckets[__n] = __cur; --_M_num_elements; } } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: clear() { if (_M_num_elements == 0) return; for (size_type __i = 0; __i < _M_buckets.size(); ++__i) { _Node* __cur = _M_buckets[__i]; while (__cur != 0) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; } _M_buckets[__i] = 0; } _M_num_elements = 0; } template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_copy_from(const hashtable& __ht) { _M_buckets.clear(); _M_buckets.reserve(__ht._M_buckets.size()); _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0); __try { for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) { const _Node* __cur = __ht._M_buckets[__i]; if (__cur) { _Node* __local_copy = _M_new_node(__cur->_M_val); _M_buckets[__i] = __local_copy; for (_Node* __next = __cur->_M_next; __next; __cur = __next, __next = __cur->_M_next) { __local_copy->_M_next = _M_new_node(__next->_M_val); __local_copy = __local_copy->_M_next; } } } _M_num_elements = __ht._M_num_elements; } __catch(...) { clear(); __throw_exception_again; } } _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif