관리-도구
편집 파일: stl_vector.h
// Vector implementation -*- C++ -*- // Copyright (C) 2001-2013 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_vector.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{vector} */ #ifndef _STL_VECTOR_H #define _STL_VECTOR_H 1 #include <bits/stl_iterator_base_funcs.h> #include <bits/functexcept.h> #include <bits/concept_check.h> #if __cplusplus >= 201103L #include <initializer_list> #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_CONTAINER /// See bits/stl_deque.h's _Deque_base for an explanation. template<typename _Tp, typename _Alloc> struct _Vector_base { typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Tp>::other _Tp_alloc_type; typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer pointer; struct _Vector_impl : public _Tp_alloc_type { pointer _M_start; pointer _M_finish; pointer _M_end_of_storage; _Vector_impl() : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0) { } _Vector_impl(_Tp_alloc_type const& __a) : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) { } #if __cplusplus >= 201103L _Vector_impl(_Tp_alloc_type&& __a) : _Tp_alloc_type(std::move(__a)), _M_start(0), _M_finish(0), _M_end_of_storage(0) { } #endif void _M_swap_data(_Vector_impl& __x) { std::swap(_M_start, __x._M_start); std::swap(_M_finish, __x._M_finish); std::swap(_M_end_of_storage, __x._M_end_of_storage); } }; public: typedef _Alloc allocator_type; _Tp_alloc_type& _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } const _Tp_alloc_type& _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); } allocator_type get_allocator() const _GLIBCXX_NOEXCEPT { return allocator_type(_M_get_Tp_allocator()); } _Vector_base() : _M_impl() { } _Vector_base(const allocator_type& __a) : _M_impl(__a) { } _Vector_base(size_t __n) : _M_impl() { _M_create_storage(__n); } _Vector_base(size_t __n, const allocator_type& __a) : _M_impl(__a) { _M_create_storage(__n); } #if __cplusplus >= 201103L _Vector_base(_Tp_alloc_type&& __a) : _M_impl(std::move(__a)) { } _Vector_base(_Vector_base&& __x) : _M_impl(std::move(__x._M_get_Tp_allocator())) { this->_M_impl._M_swap_data(__x._M_impl); } _Vector_base(_Vector_base&& __x, const allocator_type& __a) : _M_impl(__a) { if (__x.get_allocator() == __a) this->_M_impl._M_swap_data(__x._M_impl); else { size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start; _M_create_storage(__n); } } #endif ~_Vector_base() { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); } public: _Vector_impl _M_impl; pointer _M_allocate(size_t __n) { return __n != 0 ? _M_impl.allocate(__n) : 0; } void _M_deallocate(pointer __p, size_t __n) { if (__p) _M_impl.deallocate(__p, __n); } private: void _M_create_storage(size_t __n) { this->_M_impl._M_start = this->_M_allocate(__n); this->_M_impl._M_finish = this->_M_impl._M_start; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; } }; /** * @brief A standard container which offers fixed time access to * individual elements in any order. * * @ingroup sequences * * @tparam _Tp Type of element. * @tparam _Alloc Allocator type, defaults to allocator<_Tp>. * * Meets the requirements of a <a href="tables.html#65">container</a>, a * <a href="tables.html#66">reversible container</a>, and a * <a href="tables.html#67">sequence</a>, including the * <a href="tables.html#68">optional sequence requirements</a> with the * %exception of @c push_front and @c pop_front. * * In some terminology a %vector can be described as a dynamic * C-style array, it offers fast and efficient access to individual * elements in any order and saves the user from worrying about * memory and size allocation. Subscripting ( @c [] ) access is * also provided as with C-style arrays. */ template<typename _Tp, typename _Alloc = std::allocator<_Tp> > class vector : protected _Vector_base<_Tp, _Alloc> { // Concept requirements. typedef typename _Alloc::value_type _Alloc_value_type; __glibcxx_class_requires(_Tp, _SGIAssignableConcept) __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) typedef _Vector_base<_Tp, _Alloc> _Base; typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits; public: typedef _Tp value_type; typedef typename _Base::pointer pointer; typedef typename _Alloc_traits::const_pointer const_pointer; typedef typename _Alloc_traits::reference reference; typedef typename _Alloc_traits::const_reference const_reference; typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator; typedef __gnu_cxx::__normal_iterator<const_pointer, vector> const_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; protected: using _Base::_M_allocate; using _Base::_M_deallocate; using _Base::_M_impl; using _Base::_M_get_Tp_allocator; public: // [23.2.4.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section) /** * @brief Default constructor creates no elements. */ vector() : _Base() { } /** * @brief Creates a %vector with no elements. * @param __a An allocator object. */ explicit vector(const allocator_type& __a) : _Base(__a) { } #if __cplusplus >= 201103L /** * @brief Creates a %vector with default constructed elements. * @param __n The number of elements to initially create. * @param __a An allocator. * * This constructor fills the %vector with @a __n default * constructed elements. */ explicit vector(size_type __n, const allocator_type& __a = allocator_type()) : _Base(__n, __a) { _M_default_initialize(__n); } /** * @brief Creates a %vector with copies of an exemplar element. * @param __n The number of elements to initially create. * @param __value An element to copy. * @param __a An allocator. * * This constructor fills the %vector with @a __n copies of @a __value. */ vector(size_type __n, const value_type& __value, const allocator_type& __a = allocator_type()) : _Base(__n, __a) { _M_fill_initialize(__n, __value); } #else /** * @brief Creates a %vector with copies of an exemplar element. * @param __n The number of elements to initially create. * @param __value An element to copy. * @param __a An allocator. * * This constructor fills the %vector with @a __n copies of @a __value. */ explicit vector(size_type __n, const value_type& __value = value_type(), const allocator_type& __a = allocator_type()) : _Base(__n, __a) { _M_fill_initialize(__n, __value); } #endif /** * @brief %Vector copy constructor. * @param __x A %vector of identical element and allocator types. * * The newly-created %vector uses a copy of the allocation * object used by @a __x. All the elements of @a __x are copied, * but any extra memory in * @a __x (for fast expansion) will not be copied. */ vector(const vector& __x) : _Base(__x.size(), _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator())) { this->_M_impl._M_finish = std::__uninitialized_copy_a(__x.begin(), __x.end(), this->_M_impl._M_start, _M_get_Tp_allocator()); } #if __cplusplus >= 201103L /** * @brief %Vector move constructor. * @param __x A %vector of identical element and allocator types. * * The newly-created %vector contains the exact contents of @a __x. * The contents of @a __x are a valid, but unspecified %vector. */ vector(vector&& __x) noexcept : _Base(std::move(__x)) { } /// Copy constructor with alternative allocator vector(const vector& __x, const allocator_type& __a) : _Base(__x.size(), __a) { this->_M_impl._M_finish = std::__uninitialized_copy_a(__x.begin(), __x.end(), this->_M_impl._M_start, _M_get_Tp_allocator()); } /// Move constructor with alternative allocator vector(vector&& __rv, const allocator_type& __m) : _Base(std::move(__rv), __m) { if (__rv.get_allocator() != __m) { this->_M_impl._M_finish = std::__uninitialized_move_a(__rv.begin(), __rv.end(), this->_M_impl._M_start, _M_get_Tp_allocator()); __rv.clear(); } } /** * @brief Builds a %vector from an initializer list. * @param __l An initializer_list. * @param __a An allocator. * * Create a %vector consisting of copies of the elements in the * initializer_list @a __l. * * This will call the element type's copy constructor N times * (where N is @a __l.size()) and do no memory reallocation. */ vector(initializer_list<value_type> __l, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_range_initialize(__l.begin(), __l.end(), random_access_iterator_tag()); } #endif /** * @brief Builds a %vector from a range. * @param __first An input iterator. * @param __last An input iterator. * @param __a An allocator. * * Create a %vector consisting of copies of the elements from * [first,last). * * If the iterators are forward, bidirectional, or * random-access, then this will call the elements' copy * constructor N times (where N is distance(first,last)) and do * no memory reallocation. But if only input iterators are * used, then this will do at most 2N calls to the copy * constructor, and logN memory reallocations. */ #if __cplusplus >= 201103L template<typename _InputIterator, typename = std::_RequireInputIter<_InputIterator>> vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_initialize_dispatch(__first, __last, __false_type()); } #else template<typename _InputIterator> vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } #endif /** * The dtor only erases the elements, and note that if the * elements themselves are pointers, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibility. */ ~vector() _GLIBCXX_NOEXCEPT { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); } /** * @brief %Vector assignment operator. * @param __x A %vector of identical element and allocator types. * * All the elements of @a __x are copied, but any extra memory in * @a __x (for fast expansion) will not be copied. Unlike the * copy constructor, the allocator object is not copied. */ vector& operator=(const vector& __x); #if __cplusplus >= 201103L /** * @brief %Vector move assignment operator. * @param __x A %vector of identical element and allocator types. * * The contents of @a __x are moved into this %vector (without copying, * if the allocators permit it). * @a __x is a valid, but unspecified %vector. */ vector& operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move()) { constexpr bool __move_storage = _Alloc_traits::_S_propagate_on_move_assign() || _Alloc_traits::_S_always_equal(); _M_move_assign(std::move(__x), integral_constant<bool, __move_storage>()); return *this; } /** * @brief %Vector list assignment operator. * @param __l An initializer_list. * * This function fills a %vector with copies of the elements in the * initializer list @a __l. * * Note that the assignment completely changes the %vector and * that the resulting %vector's size is the same as the number * of elements assigned. Old data may be lost. */ vector& operator=(initializer_list<value_type> __l) { this->assign(__l.begin(), __l.end()); return *this; } #endif /** * @brief Assigns a given value to a %vector. * @param __n Number of elements to be assigned. * @param __val Value to be assigned. * * This function fills a %vector with @a __n copies of the given * value. Note that the assignment completely changes the * %vector and that the resulting %vector's size is the same as * the number of elements assigned. Old data may be lost. */ void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } /** * @brief Assigns a range to a %vector. * @param __first An input iterator. * @param __last An input iterator. * * This function fills a %vector with copies of the elements in the * range [__first,__last). * * Note that the assignment completely changes the %vector and * that the resulting %vector's size is the same as the number * of elements assigned. Old data may be lost. */ #if __cplusplus >= 201103L template<typename _InputIterator, typename = std::_RequireInputIter<_InputIterator>> void assign(_InputIterator __first, _InputIterator __last) { _M_assign_dispatch(__first, __last, __false_type()); } #else template<typename _InputIterator> void assign(_InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_assign_dispatch(__first, __last, _Integral()); } #endif #if __cplusplus >= 201103L /** * @brief Assigns an initializer list to a %vector. * @param __l An initializer_list. * * This function fills a %vector with copies of the elements in the * initializer list @a __l. * * Note that the assignment completely changes the %vector and * that the resulting %vector's size is the same as the number * of elements assigned. Old data may be lost. */ void assign(initializer_list<value_type> __l) { this->assign(__l.begin(), __l.end()); } #endif /// Get a copy of the memory allocation object. using _Base::get_allocator; // iterators /** * Returns a read/write iterator that points to the first * element in the %vector. Iteration is done in ordinary * element order. */ iterator begin() _GLIBCXX_NOEXCEPT { return iterator(this->_M_impl._M_start); } /** * Returns a read-only (constant) iterator that points to the * first element in the %vector. Iteration is done in ordinary * element order. */ const_iterator begin() const _GLIBCXX_NOEXCEPT { return const_iterator(this->_M_impl._M_start); } /** * Returns a read/write iterator that points one past the last * element in the %vector. Iteration is done in ordinary * element order. */ iterator end() _GLIBCXX_NOEXCEPT { return iterator(this->_M_impl._M_finish); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %vector. Iteration is done in * ordinary element order. */ const_iterator end() const _GLIBCXX_NOEXCEPT { return const_iterator(this->_M_impl._M_finish); } /** * Returns a read/write reverse iterator that points to the * last element in the %vector. Iteration is done in reverse * element order. */ reverse_iterator rbegin() _GLIBCXX_NOEXCEPT { return reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points * to the last element in the %vector. Iteration is done in * reverse element order. */ const_reverse_iterator rbegin() const _GLIBCXX_NOEXCEPT { return const_reverse_iterator(end()); } /** * Returns a read/write reverse iterator that points to one * before the first element in the %vector. Iteration is done * in reverse element order. */ reverse_iterator rend() _GLIBCXX_NOEXCEPT { return reverse_iterator(begin()); } /** * Returns a read-only (constant) reverse iterator that points * to one before the first element in the %vector. Iteration * is done in reverse element order. */ const_reverse_iterator rend() const _GLIBCXX_NOEXCEPT { return const_reverse_iterator(begin()); } #if __cplusplus >= 201103L /** * Returns a read-only (constant) iterator that points to the * first element in the %vector. Iteration is done in ordinary * element order. */ const_iterator cbegin() const noexcept { return const_iterator(this->_M_impl._M_start); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %vector. Iteration is done in * ordinary element order. */ const_iterator cend() const noexcept { return const_iterator(this->_M_impl._M_finish); } /** * Returns a read-only (constant) reverse iterator that points * to the last element in the %vector. Iteration is done in * reverse element order. */ const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points * to one before the first element in the %vector. Iteration * is done in reverse element order. */ const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); } #endif // [23.2.4.2] capacity /** Returns the number of elements in the %vector. */ size_type size() const _GLIBCXX_NOEXCEPT { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); } /** Returns the size() of the largest possible %vector. */ size_type max_size() const _GLIBCXX_NOEXCEPT { return _Alloc_traits::max_size(_M_get_Tp_allocator()); } #if __cplusplus >= 201103L /** * @brief Resizes the %vector to the specified number of elements. * @param __new_size Number of elements the %vector should contain. * * This function will %resize the %vector to the specified * number of elements. If the number is smaller than the * %vector's current size the %vector is truncated, otherwise * default constructed elements are appended. */ void resize(size_type __new_size) { if (__new_size > size()) _M_default_append(__new_size - size()); else if (__new_size < size()) _M_erase_at_end(this->_M_impl._M_start + __new_size); } /** * @brief Resizes the %vector to the specified number of elements. * @param __new_size Number of elements the %vector should contain. * @param __x Data with which new elements should be populated. * * This function will %resize the %vector to the specified * number of elements. If the number is smaller than the * %vector's current size the %vector is truncated, otherwise * the %vector is extended and new elements are populated with * given data. */ void resize(size_type __new_size, const value_type& __x) { if (__new_size > size()) insert(end(), __new_size - size(), __x); else if (__new_size < size()) _M_erase_at_end(this->_M_impl._M_start + __new_size); } #else /** * @brief Resizes the %vector to the specified number of elements. * @param __new_size Number of elements the %vector should contain. * @param __x Data with which new elements should be populated. * * This function will %resize the %vector to the specified * number of elements. If the number is smaller than the * %vector's current size the %vector is truncated, otherwise * the %vector is extended and new elements are populated with * given data. */ void resize(size_type __new_size, value_type __x = value_type()) { if (__new_size > size()) insert(end(), __new_size - size(), __x); else if (__new_size < size()) _M_erase_at_end(this->_M_impl._M_start + __new_size); } #endif #if __cplusplus >= 201103L /** A non-binding request to reduce capacity() to size(). */ void shrink_to_fit() { _M_shrink_to_fit(); } #endif /** * Returns the total number of elements that the %vector can * hold before needing to allocate more memory. */ size_type capacity() const _GLIBCXX_NOEXCEPT { return size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_start); } /** * Returns true if the %vector is empty. (Thus begin() would * equal end().) */ bool empty() const _GLIBCXX_NOEXCEPT { return begin() == end(); } /** * @brief Attempt to preallocate enough memory for specified number of * elements. * @param __n Number of elements required. * @throw std::length_error If @a n exceeds @c max_size(). * * This function attempts to reserve enough memory for the * %vector to hold the specified number of elements. If the * number requested is more than max_size(), length_error is * thrown. * * The advantage of this function is that if optimal code is a * necessity and the user can determine the number of elements * that will be required, the user can reserve the memory in * %advance, and thus prevent a possible reallocation of memory * and copying of %vector data. */ void reserve(size_type __n); // element access /** * @brief Subscript access to the data contained in the %vector. * @param __n The index of the element for which data should be * accessed. * @return Read/write reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ reference operator[](size_type __n) { return *(this->_M_impl._M_start + __n); } /** * @brief Subscript access to the data contained in the %vector. * @param __n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ const_reference operator[](size_type __n) const { return *(this->_M_impl._M_start + __n); } protected: /// Safety check used only from at(). void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(__N("vector::_M_range_check")); } public: /** * @brief Provides access to the data contained in the %vector. * @param __n The index of the element for which data should be * accessed. * @return Read/write reference to data. * @throw std::out_of_range If @a __n is an invalid index. * * This function provides for safer data access. The parameter * is first checked that it is in the range of the vector. The * function throws out_of_range if the check fails. */ reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } /** * @brief Provides access to the data contained in the %vector. * @param __n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * @throw std::out_of_range If @a __n is an invalid index. * * This function provides for safer data access. The parameter * is first checked that it is in the range of the vector. The * function throws out_of_range if the check fails. */ const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } /** * Returns a read/write reference to the data at the first * element of the %vector. */ reference front() { return *begin(); } /** * Returns a read-only (constant) reference to the data at the first * element of the %vector. */ const_reference front() const { return *begin(); } /** * Returns a read/write reference to the data at the last * element of the %vector. */ reference back() { return *(end() - 1); } /** * Returns a read-only (constant) reference to the data at the * last element of the %vector. */ const_reference back() const { return *(end() - 1); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 464. Suggestion for new member functions in standard containers. // data access /** * Returns a pointer such that [data(), data() + size()) is a valid * range. For a non-empty %vector, data() == &front(). */ #if __cplusplus >= 201103L _Tp* #else pointer #endif data() _GLIBCXX_NOEXCEPT { return std::__addressof(front()); } #if __cplusplus >= 201103L const _Tp* #else const_pointer #endif data() const _GLIBCXX_NOEXCEPT { return std::__addressof(front()); } // [23.2.4.3] modifiers /** * @brief Add data to the end of the %vector. * @param __x Data to be added. * * This is a typical stack operation. The function creates an * element at the end of the %vector and assigns the given data * to it. Due to the nature of a %vector this operation can be * done in constant time if the %vector has preallocated space * available. */ void push_back(const value_type& __x) { if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage) { _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish, __x); ++this->_M_impl._M_finish; } else #if __cplusplus >= 201103L _M_emplace_back_aux(__x); #else _M_insert_aux(end(), __x); #endif } #if __cplusplus >= 201103L void push_back(value_type&& __x) { emplace_back(std::move(__x)); } template<typename... _Args> void emplace_back(_Args&&... __args); #endif /** * @brief Removes last element. * * This is a typical stack operation. It shrinks the %vector by one. * * Note that no data is returned, and if the last element's * data is needed, it should be retrieved before pop_back() is * called. */ void pop_back() { --this->_M_impl._M_finish; _Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish); } #if __cplusplus >= 201103L /** * @brief Inserts an object in %vector before specified iterator. * @param __position An iterator into the %vector. * @param __args Arguments. * @return An iterator that points to the inserted data. * * This function will insert an object of type T constructed * with T(std::forward<Args>(args)...) before the specified location. * Note that this kind of operation could be expensive for a %vector * and if it is frequently used the user should consider using * std::list. */ template<typename... _Args> iterator emplace(iterator __position, _Args&&... __args); #endif /** * @brief Inserts given value into %vector before specified iterator. * @param __position An iterator into the %vector. * @param __x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before * the specified location. Note that this kind of operation * could be expensive for a %vector and if it is frequently * used the user should consider using std::list. */ iterator insert(iterator __position, const value_type& __x); #if __cplusplus >= 201103L /** * @brief Inserts given rvalue into %vector before specified iterator. * @param __position An iterator into the %vector. * @param __x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given rvalue before * the specified location. Note that this kind of operation * could be expensive for a %vector and if it is frequently * used the user should consider using std::list. */ iterator insert(iterator __position, value_type&& __x) { return emplace(__position, std::move(__x)); } /** * @brief Inserts an initializer_list into the %vector. * @param __position An iterator into the %vector. * @param __l An initializer_list. * * This function will insert copies of the data in the * initializer_list @a l into the %vector before the location * specified by @a position. * * Note that this kind of operation could be expensive for a * %vector and if it is frequently used the user should * consider using std::list. */ void insert(iterator __position, initializer_list<value_type> __l) { this->insert(__position, __l.begin(), __l.end()); } #endif /** * @brief Inserts a number of copies of given data into the %vector. * @param __position An iterator into the %vector. * @param __n Number of elements to be inserted. * @param __x Data to be inserted. * * This function will insert a specified number of copies of * the given data before the location specified by @a position. * * Note that this kind of operation could be expensive for a * %vector and if it is frequently used the user should * consider using std::list. */ void insert(iterator __position, size_type __n, const value_type& __x) { _M_fill_insert(__position, __n, __x); } /** * @brief Inserts a range into the %vector. * @param __position An iterator into the %vector. * @param __first An input iterator. * @param __last An input iterator. * * This function will insert copies of the data in the range * [__first,__last) into the %vector before the location specified * by @a pos. * * Note that this kind of operation could be expensive for a * %vector and if it is frequently used the user should * consider using std::list. */ #if __cplusplus >= 201103L template<typename _InputIterator, typename = std::_RequireInputIter<_InputIterator>> void insert(iterator __position, _InputIterator __first, _InputIterator __last) { _M_insert_dispatch(__position, __first, __last, __false_type()); } #else template<typename _InputIterator> void insert(iterator __position, _InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_insert_dispatch(__position, __first, __last, _Integral()); } #endif /** * @brief Remove element at given position. * @param __position Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and thus * shorten the %vector by one. * * Note This operation could be expensive and if it is * frequently used the user should consider using std::list. * The user is also cautioned that this function only erases * the element, and that if the element is itself a pointer, * the pointed-to memory is not touched in any way. Managing * the pointer is the user's responsibility. */ iterator erase(iterator __position); /** * @brief Remove a range of elements. * @param __first Iterator pointing to the first element to be erased. * @param __last Iterator pointing to one past the last element to be * erased. * @return An iterator pointing to the element pointed to by @a __last * prior to erasing (or end()). * * This function will erase the elements in the range * [__first,__last) and shorten the %vector accordingly. * * Note This operation could be expensive and if it is * frequently used the user should consider using std::list. * The user is also cautioned that this function only erases * the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ iterator erase(iterator __first, iterator __last); /** * @brief Swaps data with another %vector. * @param __x A %vector of the same element and allocator types. * * This exchanges the elements between two vectors in constant time. * (Three pointers, so it should be quite fast.) * Note that the global std::swap() function is specialized such that * std::swap(v1,v2) will feed to this function. */ void swap(vector& __x) #if __cplusplus >= 201103L noexcept(_Alloc_traits::_S_nothrow_swap()) #endif { this->_M_impl._M_swap_data(__x._M_impl); _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(), __x._M_get_Tp_allocator()); } /** * Erases all the elements. Note that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibility. */ void clear() _GLIBCXX_NOEXCEPT { _M_erase_at_end(this->_M_impl._M_start); } protected: /** * Memory expansion handler. Uses the member allocation function to * obtain @a n bytes of memory, and then copies [first,last) into it. */ template<typename _ForwardIterator> pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first, _ForwardIterator __last) { pointer __result = this->_M_allocate(__n); __try { std::__uninitialized_copy_a(__first, __last, __result, _M_get_Tp_allocator()); return __result; } __catch(...) { _M_deallocate(__result, __n); __throw_exception_again; } } // Internal constructor functions follow. // Called by the range constructor to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template<typename _Integer> void _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) { this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n)); this->_M_impl._M_end_of_storage = this->_M_impl._M_start + static_cast<size_type>(__n); _M_fill_initialize(static_cast<size_type>(__n), __value); } // Called by the range constructor to implement [23.1.1]/9 template<typename _InputIterator> void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_range_initialize(__first, __last, _IterCategory()); } // Called by the second initialize_dispatch above template<typename _InputIterator> void _M_range_initialize(_InputIterator __first, _InputIterator __last, std::input_iterator_tag) { for (; __first != __last; ++__first) #if __cplusplus >= 201103L emplace_back(*__first); #else push_back(*__first); #endif } // Called by the second initialize_dispatch above template<typename _ForwardIterator> void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { const size_type __n = std::distance(__first, __last); this->_M_impl._M_start = this->_M_allocate(__n); this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; this->_M_impl._M_finish = std::__uninitialized_copy_a(__first, __last, this->_M_impl._M_start, _M_get_Tp_allocator()); } // Called by the first initialize_dispatch above and by the // vector(n,value,a) constructor. void _M_fill_initialize(size_type __n, const value_type& __value) { std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value, _M_get_Tp_allocator()); this->_M_impl._M_finish = this->_M_impl._M_end_of_storage; } #if __cplusplus >= 201103L // Called by the vector(n) constructor. void _M_default_initialize(size_type __n) { std::__uninitialized_default_n_a(this->_M_impl._M_start, __n, _M_get_Tp_allocator()); this->_M_impl._M_finish = this->_M_impl._M_end_of_storage; } #endif // Internal assign functions follow. The *_aux functions do the actual // assignment work for the range versions. // Called by the range assign to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template<typename _Integer> void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(__n, __val); } // Called by the range assign to implement [23.1.1]/9 template<typename _InputIterator> void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_assign_aux(__first, __last, _IterCategory()); } // Called by the second assign_dispatch above template<typename _InputIterator> void _M_assign_aux(_InputIterator __first, _InputIterator __last, std::input_iterator_tag); // Called by the second assign_dispatch above template<typename _ForwardIterator> void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag); // Called by assign(n,t), and the range assign when it turns out // to be the same thing. void _M_fill_assign(size_type __n, const value_type& __val); // Internal insert functions follow. // Called by the range insert to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template<typename _Integer> void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type) { _M_fill_insert(__pos, __n, __val); } // Called by the range insert to implement [23.1.1]/9 template<typename _InputIterator> void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_range_insert(__pos, __first, __last, _IterCategory()); } // Called by the second insert_dispatch above template<typename _InputIterator> void _M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, std::input_iterator_tag); // Called by the second insert_dispatch above template<typename _ForwardIterator> void _M_range_insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag); // Called by insert(p,n,x), and the range insert when it turns out to be // the same thing. void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); #if __cplusplus >= 201103L // Called by resize(n). void _M_default_append(size_type __n); bool _M_shrink_to_fit(); #endif // Called by insert(p,x) #if __cplusplus < 201103L void _M_insert_aux(iterator __position, const value_type& __x); #else template<typename... _Args> void _M_insert_aux(iterator __position, _Args&&... __args); template<typename... _Args> void _M_emplace_back_aux(_Args&&... __args); #endif // Called by the latter. size_type _M_check_len(size_type __n, const char* __s) const { if (max_size() - size() < __n) __throw_length_error(__N(__s)); const size_type __len = size() + std::max(size(), __n); return (__len < size() || __len > max_size()) ? max_size() : __len; } // Internal erase functions follow. // Called by erase(q1,q2), clear(), resize(), _M_fill_assign, // _M_assign_aux. void _M_erase_at_end(pointer __pos) { std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator()); this->_M_impl._M_finish = __pos; } #if __cplusplus >= 201103L private: // Constant-time move assignment when source object's memory can be // moved, either because the source's allocator will move too // or because the allocators are equal. void _M_move_assign(vector&& __x, std::true_type) noexcept { vector __tmp(get_allocator()); this->_M_impl._M_swap_data(__tmp._M_impl); this->_M_impl._M_swap_data(__x._M_impl); if (_Alloc_traits::_S_propagate_on_move_assign()) std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator()); } // Do move assignment when it might not be possible to move source // object's memory, resulting in a linear-time operation. void _M_move_assign(vector&& __x, std::false_type) { if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator()) _M_move_assign(std::move(__x), std::true_type()); else { // The rvalue's allocator cannot be moved and is not equal, // so we need to individually move each element. this->assign(std::__make_move_if_noexcept_iterator(__x.begin()), std::__make_move_if_noexcept_iterator(__x.end())); __x.clear(); } } #endif }; /** * @brief Vector equality comparison. * @param __x A %vector. * @param __y A %vector of the same type as @a __x. * @return True iff the size and elements of the vectors are equal. * * This is an equivalence relation. It is linear in the size of the * vectors. Vectors are considered equivalent if their sizes are equal, * and if corresponding elements compare equal. */ template<typename _Tp, typename _Alloc> inline bool operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return (__x.size() == __y.size() && std::equal(__x.begin(), __x.end(), __y.begin())); } /** * @brief Vector ordering relation. * @param __x A %vector. * @param __y A %vector of the same type as @a __x. * @return True iff @a __x is lexicographically less than @a __y. * * This is a total ordering relation. It is linear in the size of the * vectors. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template<typename _Tp, typename _Alloc> inline bool operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } /// Based on operator== template<typename _Tp, typename _Alloc> inline bool operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__x == __y); } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return __y < __x; } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__y < __x); } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__x < __y); } /// See std::vector::swap(). template<typename _Tp, typename _Alloc> inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y) { __x.swap(__y); } _GLIBCXX_END_NAMESPACE_CONTAINER } // namespace std #endif /* _STL_VECTOR_H */