관리-도구
편집 파일: throw_allocator.h
// -*- C++ -*- // Copyright (C) 2005-2013 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the terms // of the GNU General Public License as published by the Free Software // Foundation; either version 3, or (at your option) any later // version. // This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. // Copyright (C) 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL. // Permission to use, copy, modify, sell, and distribute this software // is hereby granted without fee, provided that the above copyright // notice appears in all copies, and that both that copyright notice // and this permission notice appear in supporting documentation. None // of the above authors, nor IBM Haifa Research Laboratories, make any // representation about the suitability of this software for any // purpose. It is provided "as is" without express or implied // warranty. /** @file ext/throw_allocator.h * This file is a GNU extension to the Standard C++ Library. * * Contains two exception-generating types (throw_value, throw_allocator) * intended to be used as value and allocator types while testing * exception safety in templatized containers and algorithms. The * allocator has additional log and debug features. The exception * generated is of type forced_exception_error. */ #ifndef _THROW_ALLOCATOR_H #define _THROW_ALLOCATOR_H 1 #include <cmath> #include <ctime> #include <map> #include <string> #include <ostream> #include <stdexcept> #include <utility> #include <bits/functexcept.h> #include <bits/move.h> #if __cplusplus >= 201103L # include <functional> # include <random> #else # include <tr1/functional> # include <tr1/random> #endif namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** * @brief Thown by exception safety machinery. * @ingroup exceptions */ struct forced_error : public std::exception { }; // Substitute for forced_error object when -fno-exceptions. inline void __throw_forced_error() { _GLIBCXX_THROW_OR_ABORT(forced_error()); } /** * @brief Base class for checking address and label information * about allocations. Create a std::map between the allocated * address (void*) and a datum for annotations, which are a pair of * numbers corresponding to label and allocated size. */ struct annotate_base { annotate_base() { label(); map(); } static void set_label(size_t l) { label() = l; } static size_t get_label() { return label(); } void insert(void* p, size_t size) { if (!p) { std::string error("annotate_base::insert null insert!\n"); log_to_string(error, make_entry(p, size)); std::__throw_logic_error(error.c_str()); } const_iterator found = map().find(p); if (found != map().end()) { std::string error("annotate_base::insert double insert!\n"); log_to_string(error, make_entry(p, size)); log_to_string(error, *found); std::__throw_logic_error(error.c_str()); } map().insert(make_entry(p, size)); } void erase(void* p, size_t size) { check_allocated(p, size); map().erase(p); } // See if a particular address and allocation size has been saved. inline void check_allocated(void* p, size_t size) { const_iterator found = map().find(p); if (found == map().end()) { std::string error("annotate_base::check_allocated by value " "null erase!\n"); log_to_string(error, make_entry(p, size)); std::__throw_logic_error(error.c_str()); } if (found->second.second != size) { std::string error("annotate_base::check_allocated by value " "wrong-size erase!\n"); log_to_string(error, make_entry(p, size)); log_to_string(error, *found); std::__throw_logic_error(error.c_str()); } } // See if a given label has been allocated. inline void check_allocated(size_t label) { const_iterator beg = map().begin(); const_iterator end = map().end(); std::string found; while (beg != end) { if (beg->second.first == label) log_to_string(found, *beg); ++beg; } if (!found.empty()) { std::string error("annotate_base::check_allocated by label\n"); error += found; std::__throw_logic_error(error.c_str()); } } private: typedef std::pair<size_t, size_t> data_type; typedef std::map<void*, data_type> map_type; typedef map_type::value_type entry_type; typedef map_type::const_iterator const_iterator; typedef map_type::const_reference const_reference; friend std::ostream& operator<<(std::ostream&, const annotate_base&); entry_type make_entry(void* p, size_t size) { return std::make_pair(p, data_type(get_label(), size)); } void log_to_string(std::string& s, const_reference ref) const { char buf[40]; const char tab('\t'); s += "label: "; unsigned long l = static_cast<unsigned long>(ref.second.first); __builtin_sprintf(buf, "%lu", l); s += buf; s += tab; s += "size: "; l = static_cast<unsigned long>(ref.second.second); __builtin_sprintf(buf, "%lu", l); s += buf; s += tab; s += "address: "; __builtin_sprintf(buf, "%p", ref.first); s += buf; s += '\n'; } static size_t& label() { static size_t _S_label(std::numeric_limits<size_t>::max()); return _S_label; } static map_type& map() { static map_type _S_map; return _S_map; } }; inline std::ostream& operator<<(std::ostream& os, const annotate_base& __b) { std::string error; typedef annotate_base base_type; base_type::const_iterator beg = __b.map().begin(); base_type::const_iterator end = __b.map().end(); for (; beg != end; ++beg) __b.log_to_string(error, *beg); return os << error; } /** * @brief Base struct for condition policy. * * Requires a public member function with the signature * void throw_conditionally() */ struct condition_base { virtual ~condition_base() { }; }; /** * @brief Base class for incremental control and throw. */ struct limit_condition : public condition_base { // Scope-level adjustor objects: set limit for throw at the // beginning of a scope block, and restores to previous limit when // object is destroyed on exiting the block. struct adjustor_base { private: const size_t _M_orig; public: adjustor_base() : _M_orig(limit()) { } virtual ~adjustor_base() { set_limit(_M_orig); } }; /// Never enter the condition. struct never_adjustor : public adjustor_base { never_adjustor() { set_limit(std::numeric_limits<size_t>::max()); } }; /// Always enter the condition. struct always_adjustor : public adjustor_base { always_adjustor() { set_limit(count()); } }; /// Enter the nth condition. struct limit_adjustor : public adjustor_base { limit_adjustor(const size_t __l) { set_limit(__l); } }; // Increment _S_count every time called. // If _S_count matches the limit count, throw. static void throw_conditionally() { if (count() == limit()) __throw_forced_error(); ++count(); } static size_t& count() { static size_t _S_count(0); return _S_count; } static size_t& limit() { static size_t _S_limit(std::numeric_limits<size_t>::max()); return _S_limit; } // Zero the throw counter, set limit to argument. static void set_limit(const size_t __l) { limit() = __l; count() = 0; } }; /** * @brief Base class for random probability control and throw. */ struct random_condition : public condition_base { // Scope-level adjustor objects: set probability for throw at the // beginning of a scope block, and restores to previous // probability when object is destroyed on exiting the block. struct adjustor_base { private: const double _M_orig; public: adjustor_base() : _M_orig(probability()) { } virtual ~adjustor_base() { set_probability(_M_orig); } }; /// Group condition. struct group_adjustor : public adjustor_base { group_adjustor(size_t size) { set_probability(1 - std::pow(double(1 - probability()), double(0.5 / (size + 1)))); } }; /// Never enter the condition. struct never_adjustor : public adjustor_base { never_adjustor() { set_probability(0); } }; /// Always enter the condition. struct always_adjustor : public adjustor_base { always_adjustor() { set_probability(1); } }; random_condition() { probability(); engine(); } static void set_probability(double __p) { probability() = __p; } static void throw_conditionally() { if (generate() < probability()) __throw_forced_error(); } void seed(unsigned long __s) { engine().seed(__s); } private: #if __cplusplus >= 201103L typedef std::uniform_real_distribution<double> distribution_type; typedef std::mt19937 engine_type; #else typedef std::tr1::uniform_real<double> distribution_type; typedef std::tr1::mt19937 engine_type; #endif static double generate() { #if __cplusplus >= 201103L const distribution_type distribution(0, 1); static auto generator = std::bind(distribution, engine()); #else // Use variate_generator to get normalized results. typedef std::tr1::variate_generator<engine_type, distribution_type> gen_t; distribution_type distribution(0, 1); static gen_t generator(engine(), distribution); #endif double random = generator(); if (random < distribution.min() || random > distribution.max()) { std::string __s("random_condition::generate"); __s += "\n"; __s += "random number generated is: "; char buf[40]; __builtin_sprintf(buf, "%f", random); __s += buf; std::__throw_out_of_range(__s.c_str()); } return random; } static double& probability() { static double _S_p; return _S_p; } static engine_type& engine() { static engine_type _S_e; return _S_e; } }; /** * @brief Class with exception generation control. Intended to be * used as a value_type in templatized code. * * Note: Destructor not allowed to throw. */ template<typename _Cond> struct throw_value_base : public _Cond { typedef _Cond condition_type; using condition_type::throw_conditionally; std::size_t _M_i; #ifndef _GLIBCXX_IS_AGGREGATE throw_value_base() : _M_i(0) { throw_conditionally(); } throw_value_base(const throw_value_base& __v) : _M_i(__v._M_i) { throw_conditionally(); } #if __cplusplus >= 201103L // Shall not throw. throw_value_base(throw_value_base&&) = default; #endif explicit throw_value_base(const std::size_t __i) : _M_i(__i) { throw_conditionally(); } #endif throw_value_base& operator=(const throw_value_base& __v) { throw_conditionally(); _M_i = __v._M_i; return *this; } #if __cplusplus >= 201103L // Shall not throw. throw_value_base& operator=(throw_value_base&&) = default; #endif throw_value_base& operator++() { throw_conditionally(); ++_M_i; return *this; } }; template<typename _Cond> inline void swap(throw_value_base<_Cond>& __a, throw_value_base<_Cond>& __b) { typedef throw_value_base<_Cond> throw_value; throw_value::throw_conditionally(); throw_value orig(__a); __a = __b; __b = orig; } // General instantiable types requirements. template<typename _Cond> inline bool operator==(const throw_value_base<_Cond>& __a, const throw_value_base<_Cond>& __b) { typedef throw_value_base<_Cond> throw_value; throw_value::throw_conditionally(); bool __ret = __a._M_i == __b._M_i; return __ret; } template<typename _Cond> inline bool operator<(const throw_value_base<_Cond>& __a, const throw_value_base<_Cond>& __b) { typedef throw_value_base<_Cond> throw_value; throw_value::throw_conditionally(); bool __ret = __a._M_i < __b._M_i; return __ret; } // Numeric algorithms instantiable types requirements. template<typename _Cond> inline throw_value_base<_Cond> operator+(const throw_value_base<_Cond>& __a, const throw_value_base<_Cond>& __b) { typedef throw_value_base<_Cond> throw_value; throw_value::throw_conditionally(); throw_value __ret(__a._M_i + __b._M_i); return __ret; } template<typename _Cond> inline throw_value_base<_Cond> operator-(const throw_value_base<_Cond>& __a, const throw_value_base<_Cond>& __b) { typedef throw_value_base<_Cond> throw_value; throw_value::throw_conditionally(); throw_value __ret(__a._M_i - __b._M_i); return __ret; } template<typename _Cond> inline throw_value_base<_Cond> operator*(const throw_value_base<_Cond>& __a, const throw_value_base<_Cond>& __b) { typedef throw_value_base<_Cond> throw_value; throw_value::throw_conditionally(); throw_value __ret(__a._M_i * __b._M_i); return __ret; } /// Type throwing via limit condition. struct throw_value_limit : public throw_value_base<limit_condition> { typedef throw_value_base<limit_condition> base_type; #ifndef _GLIBCXX_IS_AGGREGATE throw_value_limit() { } throw_value_limit(const throw_value_limit& __other) : base_type(__other._M_i) { } #if __cplusplus >= 201103L throw_value_limit(throw_value_limit&&) = default; #endif explicit throw_value_limit(const std::size_t __i) : base_type(__i) { } #endif throw_value_limit& operator=(const throw_value_limit& __other) { base_type::operator=(__other); return *this; } #if __cplusplus >= 201103L throw_value_limit& operator=(throw_value_limit&&) = default; #endif }; /// Type throwing via random condition. struct throw_value_random : public throw_value_base<random_condition> { typedef throw_value_base<random_condition> base_type; #ifndef _GLIBCXX_IS_AGGREGATE throw_value_random() { } throw_value_random(const throw_value_random& __other) : base_type(__other._M_i) { } #if __cplusplus >= 201103L throw_value_random(throw_value_random&&) = default; #endif explicit throw_value_random(const std::size_t __i) : base_type(__i) { } #endif throw_value_random& operator=(const throw_value_random& __other) { base_type::operator=(__other); return *this; } #if __cplusplus >= 201103L throw_value_random& operator=(throw_value_random&&) = default; #endif }; /** * @brief Allocator class with logging and exception generation control. * Intended to be used as an allocator_type in templatized code. * @ingroup allocators * * Note: Deallocate not allowed to throw. */ template<typename _Tp, typename _Cond> class throw_allocator_base : public annotate_base, public _Cond { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; #if __cplusplus >= 201103L // _GLIBCXX_RESOLVE_LIB_DEFECTS // 2103. std::allocator propagate_on_container_move_assignment typedef std::true_type propagate_on_container_move_assignment; #endif private: typedef _Cond condition_type; std::allocator<value_type> _M_allocator; using condition_type::throw_conditionally; public: size_type max_size() const _GLIBCXX_USE_NOEXCEPT { return _M_allocator.max_size(); } pointer address(reference __x) const _GLIBCXX_NOEXCEPT { return std::__addressof(__x); } const_pointer address(const_reference __x) const _GLIBCXX_NOEXCEPT { return std::__addressof(__x); } pointer allocate(size_type __n, std::allocator<void>::const_pointer hint = 0) { if (__n > this->max_size()) std::__throw_bad_alloc(); throw_conditionally(); pointer const a = _M_allocator.allocate(__n, hint); insert(a, sizeof(value_type) * __n); return a; } #if __cplusplus >= 201103L template<typename _Up, typename... _Args> void construct(_Up* __p, _Args&&... __args) { return _M_allocator.construct(__p, std::forward<_Args>(__args)...); } template<typename _Up> void destroy(_Up* __p) { _M_allocator.destroy(__p); } #else void construct(pointer __p, const value_type& val) { return _M_allocator.construct(__p, val); } void destroy(pointer __p) { _M_allocator.destroy(__p); } #endif void deallocate(pointer __p, size_type __n) { erase(__p, sizeof(value_type) * __n); _M_allocator.deallocate(__p, __n); } void check_allocated(pointer __p, size_type __n) { size_type __t = sizeof(value_type) * __n; annotate_base::check_allocated(__p, __t); } void check_allocated(size_type __n) { annotate_base::check_allocated(__n); } }; template<typename _Tp, typename _Cond> inline bool operator==(const throw_allocator_base<_Tp, _Cond>&, const throw_allocator_base<_Tp, _Cond>&) { return true; } template<typename _Tp, typename _Cond> inline bool operator!=(const throw_allocator_base<_Tp, _Cond>&, const throw_allocator_base<_Tp, _Cond>&) { return false; } /// Allocator throwing via limit condition. template<typename _Tp> struct throw_allocator_limit : public throw_allocator_base<_Tp, limit_condition> { template<typename _Tp1> struct rebind { typedef throw_allocator_limit<_Tp1> other; }; throw_allocator_limit() _GLIBCXX_USE_NOEXCEPT { } throw_allocator_limit(const throw_allocator_limit&) _GLIBCXX_USE_NOEXCEPT { } template<typename _Tp1> throw_allocator_limit(const throw_allocator_limit<_Tp1>&) _GLIBCXX_USE_NOEXCEPT { } ~throw_allocator_limit() _GLIBCXX_USE_NOEXCEPT { } }; /// Allocator throwing via random condition. template<typename _Tp> struct throw_allocator_random : public throw_allocator_base<_Tp, random_condition> { template<typename _Tp1> struct rebind { typedef throw_allocator_random<_Tp1> other; }; throw_allocator_random() _GLIBCXX_USE_NOEXCEPT { } throw_allocator_random(const throw_allocator_random&) _GLIBCXX_USE_NOEXCEPT { } template<typename _Tp1> throw_allocator_random(const throw_allocator_random<_Tp1>&) _GLIBCXX_USE_NOEXCEPT { } ~throw_allocator_random() _GLIBCXX_USE_NOEXCEPT { } }; _GLIBCXX_END_NAMESPACE_VERSION } // namespace #if __cplusplus >= 201103L # include <bits/functional_hash.h> namespace std _GLIBCXX_VISIBILITY(default) { /// Explicit specialization of std::hash for __gnu_cxx::throw_value_limit. template<> struct hash<__gnu_cxx::throw_value_limit> : public std::unary_function<__gnu_cxx::throw_value_limit, size_t> { size_t operator()(const __gnu_cxx::throw_value_limit& __val) const { std::hash<std::size_t> __h; size_t __result = __h(__val._M_i); return __result; } }; /// Explicit specialization of std::hash for __gnu_cxx::throw_value_limit. template<> struct hash<__gnu_cxx::throw_value_random> : public std::unary_function<__gnu_cxx::throw_value_random, size_t> { size_t operator()(const __gnu_cxx::throw_value_random& __val) const { std::hash<std::size_t> __h; size_t __result = __h(__val._M_i); return __result; } }; } // end namespace std #endif #endif