관리-도구
편집 파일: array
// Profile array implementation -*- C++ -*- // Copyright (C) 2012-2013 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file profile/array * This is a Standard C++ Library header. */ #ifndef _GLIBCXX_PROFILE_ARRAY #define _GLIBCXX_PROFILE_ARRAY 1 #pragma GCC system_header namespace std _GLIBCXX_VISIBILITY(default) { namespace __profile { template<typename _Tp, std::size_t _Nm> struct array { typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef value_type* iterator; typedef const value_type* const_iterator; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; // Support for zero-sized arrays mandatory. typedef _GLIBCXX_STD_C::__array_traits<_Tp, _Nm> _AT_Type; typename _AT_Type::_Type _M_elems; // No explicit construct/copy/destroy for aggregate type. // DR 776. void fill(const value_type& __u) { std::fill_n(begin(), size(), __u); } void swap(array& __other) noexcept(noexcept(swap(std::declval<_Tp&>(), std::declval<_Tp&>()))) { std::swap_ranges(begin(), end(), __other.begin()); } // Iterators. iterator begin() noexcept { return iterator(data()); } const_iterator begin() const noexcept { return const_iterator(data()); } iterator end() noexcept { return iterator(data() + _Nm); } const_iterator end() const noexcept { return const_iterator(data() + _Nm); } reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); } reverse_iterator rend() noexcept { return reverse_iterator(begin()); } const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); } const_iterator cbegin() const noexcept { return const_iterator(data()); } const_iterator cend() const noexcept { return const_iterator(data() + _Nm); } const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); } const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); } // Capacity. constexpr size_type size() const noexcept { return _Nm; } constexpr size_type max_size() const noexcept { return _Nm; } constexpr bool empty() const noexcept { return size() == 0; } // Element access. reference operator[](size_type __n) { return _AT_Type::_S_ref(_M_elems, __n); } constexpr const_reference operator[](size_type __n) const noexcept { return _AT_Type::_S_ref(_M_elems, __n); } reference at(size_type __n) { if (__n >= _Nm) std::__throw_out_of_range(__N("array::at")); return _AT_Type::_S_ref(_M_elems, __n); } constexpr const_reference at(size_type __n) const { // Result of conditional expression must be an lvalue so use // boolean ? lvalue : (throw-expr, lvalue) return __n < _Nm ? _AT_Type::_S_ref(_M_elems, __n) : (std::__throw_out_of_range(__N("array::at")), _AT_Type::_S_ref(_M_elems, 0)); } reference front() { return *begin(); } constexpr const_reference front() const { return _AT_Type::_S_ref(_M_elems, 0); } reference back() { return _Nm ? *(end() - 1) : *end(); } constexpr const_reference back() const { return _Nm ? _AT_Type::_S_ref(_M_elems, _Nm - 1) : _AT_Type::_S_ref(_M_elems, 0); } pointer data() noexcept { return std::__addressof(_AT_Type::_S_ref(_M_elems, 0)); } const_pointer data() const noexcept { return std::__addressof(_AT_Type::_S_ref(_M_elems, 0)); } }; // Array comparisons. template<typename _Tp, std::size_t _Nm> inline bool operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return std::equal(__one.begin(), __one.end(), __two.begin()); } template<typename _Tp, std::size_t _Nm> inline bool operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one == __two); } template<typename _Tp, std::size_t _Nm> inline bool operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b) { return std::lexicographical_compare(__a.begin(), __a.end(), __b.begin(), __b.end()); } template<typename _Tp, std::size_t _Nm> inline bool operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return __two < __one; } template<typename _Tp, std::size_t _Nm> inline bool operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one > __two); } template<typename _Tp, std::size_t _Nm> inline bool operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one < __two); } // Specialized algorithms. template<typename _Tp, std::size_t _Nm> inline void swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two) noexcept(noexcept(__one.swap(__two))) { __one.swap(__two); } template<std::size_t _Int, typename _Tp, std::size_t _Nm> constexpr _Tp& get(array<_Tp, _Nm>& __arr) noexcept { static_assert(_Int < _Nm, "index is out of bounds"); return _GLIBCXX_STD_C::__array_traits<_Tp, _Nm>:: _S_ref(__arr._M_elems, _Int); } template<std::size_t _Int, typename _Tp, std::size_t _Nm> constexpr _Tp&& get(array<_Tp, _Nm>&& __arr) noexcept { static_assert(_Int < _Nm, "index is out of bounds"); return std::move(get<_Int>(__arr)); } template<std::size_t _Int, typename _Tp, std::size_t _Nm> constexpr const _Tp& get(const array<_Tp, _Nm>& __arr) noexcept { static_assert(_Int < _Nm, "index is out of bounds"); return _GLIBCXX_STD_C::__array_traits<_Tp, _Nm>:: _S_ref(__arr._M_elems, _Int); } } // namespace __profile // Tuple interface to class template array. /// tuple_size template<typename _Tp, std::size_t _Nm> struct tuple_size<__profile::array<_Tp, _Nm>> : public integral_constant<std::size_t, _Nm> { }; /// tuple_element template<std::size_t _Int, typename _Tp, std::size_t _Nm> struct tuple_element<_Int, __profile::array<_Tp, _Nm>> { static_assert(_Int < _Nm, "index is out of bounds"); typedef _Tp type; }; } // namespace std #endif // _GLIBCXX_PROFILE_ARRAY