관리-도구
편집 파일: stat.c
/* -*- linux-c -*- * Statistics Aggregation * Copyright (C) 2005-2016 Red Hat Inc. * Copyright (C) 2006 Intel Corporation * * This file is part of systemtap, and is free software. You can * redistribute it and/or modify it under the terms of the GNU General * Public License (GPL); either version 2, or (at your option) any * later version. */ #ifndef _STAT_C_ #define _STAT_C_ /** @file stat.c * @brief Statistics Aggregation */ /** @addtogroup stat Statistics Aggregation * The Statistics aggregations keep per-cpu statistics. You * must create all aggregations at probe initialization and it is * best to not read them until probe exit. If you must read them * while probes are running, the values may be slightly off due * to a probe updating the statistics of one cpu while another cpu attempts * to read the same data. This will also negatively impact performance. * * Stats keep track of count, sum, min, max, avg, and variance. Bit-shift * can be optionally specified, scaling the numbers, in order to improve the * accuracy of the integer arithmetics. * * Histograms are optional. If you want a histogram, you must set "type" * to HIST_LOG or HIST_LINEAR when you call _stp_stat_init(). * * @{ */ #include "stat-common.c" /** Initialize a Stat. * Call this during probe initialization to create a Stat. * * @param type (KEY_HIST_TYPE and associated parameters) * * For HIST_LOG, the following additional parametrs are required: * @param buckets - An integer specifying the number of buckets. * * For HIST_LINEAR, the following additional parametrs are required: * @param start - An integer. The start of the histogram. * @param stop - An integer. The stopping value. Should be > start. * @param interval - An integer. The interval. * * @param stat_ops (STAT_OP_* and associated parameter bit_shift for STAT_OP_VARIANCE) */ static Stat _stp_stat_init (int first_arg, ...) { int size, buckets=0, start=0, stop=0, interval=0, bit_shift=0; int stat_ops=0, htype=0; int arg = first_arg; Stat st; va_list ap; va_start (ap, first_arg); do { switch (arg) { case KEY_HIST_TYPE: htype = va_arg(ap, int); if (htype == HIST_LINEAR) { start = va_arg(ap, int); stop = va_arg(ap, int); interval = va_arg(ap, int); buckets = _stp_stat_calc_buckets(stop, start, interval); if (!buckets) { va_end (ap); return NULL; } } if (htype == HIST_LOG) buckets = HIST_LOG_BUCKETS; break; case STAT_OP_COUNT: stat_ops |= STAT_OP_COUNT; break; case STAT_OP_SUM: stat_ops |= STAT_OP_SUM; break; case STAT_OP_MIN: stat_ops |= STAT_OP_MIN; break; case STAT_OP_MAX: stat_ops |= STAT_OP_MAX; break; case STAT_OP_AVG: stat_ops |= STAT_OP_AVG; break; case STAT_OP_VARIANCE: stat_ops |= STAT_OP_VARIANCE; bit_shift = va_arg(ap, int); break; default: _stp_warn ("Unknown argument %d\n", arg); } arg = va_arg(ap, int); } while (arg); va_end (ap); size = buckets * sizeof(int64_t) + sizeof(stat_data); st = _stp_stat_alloc (size); if (st == NULL) return NULL; st->hist.type = htype; st->hist.start = start; st->hist.stop = stop; st->hist.interval = interval; st->hist.buckets = buckets; st->hist.bit_shift = bit_shift; st->hist.stat_ops = stat_ops; return st; } /** Delete Stat. * Call this to free all memory allocated during initialization. * * @param st Stat */ static void _stp_stat_del (Stat st) { if (st) _stp_stat_free(st); } /** Add to a Stat. * Add an int64 to a Stat, and for optimization purposes specify which * statistical operators are bound to given Stat. Set all of stat_op* * to 1 if unsure. Note that @avg() is being evaluated separately based * on @sum and @count within the code directly generated by the translator. * * @param st Stat * @param val Value to add * @param stat_op_count int * @param stat_op_sum int * @param stat_op_min int * @param stat_op_max int * @param stat_op_variance int * */ static inline void _stp_stat_add (Stat st, int64_t val, int stat_op_count, int stat_op_sum, int stat_op_min, int stat_op_max, int stat_op_variance) { stat_data *sd = _stp_stat_per_cpu_ptr (st, STAT_GET_CPU()); STAT_LOCK(sd); __stp_stat_add (&st->hist, sd, val, stat_op_count, stat_op_sum, stat_op_min, stat_op_max, stat_op_variance); STAT_UNLOCK(sd); STAT_PUT_CPU(); } static void _stp_stat_clear_data (Stat st, stat_data *sd) { int j; sd->count = sd->sum = sd->min = sd->max = 0; sd->avg_s = sd->variance = sd->variance_s = 0; if (st->hist.type != HIST_NONE) { for (j = 0; j < st->hist.buckets; j++) sd->histogram[j] = 0; } } /** Get Stats. * Gets the aggregated Stats for all CPUs. * * @param st Stat * @param clear Set if you want the data cleared after the read. Useful * for polling. * @returns A pointer to a stat. */ static stat_data *_stp_stat_get (Stat st, int clear) { int i, j; int64_t S1, S2; stat_data *agg = _stp_stat_get_agg(st); stat_data *sd; STAT_LOCK(agg); _stp_stat_clear_data (st, agg); S1 = S2 = 0; for_each_possible_cpu(i) { stat_data *sd = _stp_stat_per_cpu_ptr (st, i); STAT_LOCK(sd); if (sd->count) { agg->shift = sd->shift; if (agg->count == 0) { agg->min = sd->min; agg->max = sd->max; } agg->count += sd->count; agg->sum += sd->sum; if (sd->max > agg->max) agg->max = sd->max; if (sd->min < agg->min) agg->min = sd->min; if (st->hist.type != HIST_NONE) { for (j = 0; j < st->hist.buckets; j++) agg->histogram[j] += sd->histogram[j]; } } STAT_UNLOCK(sd); } agg->avg_s = _stp_div64(NULL, agg->sum << agg->shift, agg->count); /* * For aggregating variance over available CPUs, the Total Variance * formula is being used. This formula is mentioned in following * paper: Niranjan Kamat, Arnab Nandi: A Closer Look at Variance * Implementations In Modern Database Systems: SIGMOD Record 2015. * Available at: http://web.cse.ohio-state.edu/~kamatn/variance.pdf */ for_each_possible_cpu(i) { sd = _stp_stat_per_cpu_ptr (st, i); STAT_LOCK(sd); if (sd->count) { S1 += sd->count * (sd->avg_s - agg->avg_s) * (sd->avg_s - agg->avg_s); S2 += (sd->count - 1) * sd->variance_s; } if (clear) _stp_stat_clear_data (st, sd); STAT_UNLOCK(sd); } agg->variance_s = _stp_div64(NULL, (S1 + S2), (agg->count - 1)); agg->variance = agg->variance_s >> (2 * agg->shift); /* * Originally this function returned the aggregate still * locked and it was the caller's responsibility to unlock the * aggregate. However the translator generated code that called * this function wasn't unlocking it... * * But, the translator generates its own locks for global * variables (like stats), so we don't need to return the * aggregate still locked. * * It is possible we could even skip locking the aggregate in * this function, but to be a bit paranoid lets keep the * locking. */ STAT_UNLOCK(agg); return agg; } /** Clear Stats. * Clears the Stats. * * @param st Stat */ static void _stp_stat_clear (Stat st) { int i; for_each_possible_cpu(i) { stat_data *sd = _stp_stat_per_cpu_ptr (st, i); STAT_LOCK(sd); _stp_stat_clear_data (st, sd); STAT_UNLOCK(sd); } } /** @} */ #endif /* _STAT_C_ */