관리-도구
편집 파일: memory.stp
// memory/vm related tapset // Copyright (C) 2005, 2006 IBM Corp. // Copyright (C) 2006 Intel Corporation. // Copyright (C) 2014-2017 Red Hat Inc. // // This file is part of systemtap, and is free software. You can // redistribute it and/or modify it under the terms of the GNU General // Public License (GPL); either version 2, or (at your option) any // later version. // <tapsetdescription> // This family of probe points is used to probe memory-related events. // </tapsetdescription> %{ #include <linux/mm.h> %} global VM_FAULT_OOM=0, VM_FAULT_SIGBUS=1, VM_FAULT_MINOR=2, VM_FAULT_MAJOR=3 global VM_FAULT_NOPAGE=4, VM_FAULT_LOCKED=5, VM_FAULT_ERROR=6 global FAULT_FLAG_WRITE=1 /** * sfunction vm_fault_contains - Test return value for page fault reason * * @value: the fault_type returned by vm.page_fault.return * @test: the type of fault to test for (VM_FAULT_OOM or similar) */ function vm_fault_contains:long (value:long, test:long) %{ int res; switch (STAP_ARG_test){ case 0: res = STAP_ARG_value & VM_FAULT_OOM; break; case 1: res = STAP_ARG_value & VM_FAULT_SIGBUS; break; #if !defined(VM_FAULT_MINOR) || (defined(VM_FAULT_MINOR) && VM_FAULT_MINOR == 0) case 2: /* VM_FAULT_MINOR infered by that flags off */ res = !((VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_MAJOR) & STAP_ARG_value); break; #else case 2: res = STAP_ARG_value == VM_FAULT_MINOR; break; #endif case 3: res = STAP_ARG_value & VM_FAULT_MAJOR; break; #ifdef VM_FAULT_NOPAGE case 4: res = STAP_ARG_value & VM_FAULT_NOPAGE; break; #endif #ifdef VM_FAULT_LOCKED case 5: res = STAP_ARG_value & VM_FAULT_LOCKED; break; #endif #ifdef VM_FAULT_ERROR case 6: res = STAP_ARG_value & VM_FAULT_ERROR; break; #endif default: res = 0; break; } STAP_RETVALUE = (res != 0); return; %} /** * probe vm.pagefault - Records that a page fault occurred * * @name: name of the probe point * @address: the address of the faulting memory access; i.e. the address that caused the page fault * @write_access: indicates whether this was a write or read access; 1 indicates a write, * while 0 indicates a read * * Context: The process which triggered the fault */ probe vm.pagefault = kernel.function("handle_mm_fault@mm/memory.c").call !, kernel.function("__handle_mm_fault@mm/memory.c").call { name = "pagefault" write_access = (@defined($flags) ? $flags & FAULT_FLAG_WRITE : $write_access) address = $address } /** * probe vm.pagefault.return - Indicates what type of fault occurred * * @name: name of the probe point * @fault_type: returns either * 0 (VM_FAULT_OOM) for out of memory faults, * 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for * major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault, * nor major fault. */ probe vm.pagefault.return = kernel.function("handle_mm_fault@mm/memory.c").return !, kernel.function("__handle_mm_fault@mm/memory.c").return { name = "pagefault" fault_type = $return } /** * sfunction addr_to_node - Returns which node a given address belongs to within a NUMA system * * @addr: the address of the faulting memory access * * Description: This function accepts an address, and returns the * node that the given address belongs to in a NUMA system. */ function addr_to_node:long(addr:long) %{ /* pure */ int nid; int pfn; if (! virt_addr_valid((void*) (uintptr_t) STAP_ARG_addr)) { snprintf (CONTEXT->error_buffer, sizeof(CONTEXT->error_buffer), "invalid kernel virtual address 0x%p", (void *) (uintptr_t) STAP_ARG_addr); CONTEXT->last_error = CONTEXT->error_buffer; goto out; } pfn = __pa(STAP_ARG_addr) >> PAGE_SHIFT; #ifdef for_each_online_node for_each_online_node(nid) #else for (nid=0; nid<MAX_NUMNODES; nid++) if (NODE_DATA(nid)) /* approximately: if (node_online(nid)) */ #endif if ( NODE_DATA(nid)->node_start_pfn <= pfn && pfn < (NODE_DATA(nid)->node_start_pfn + NODE_DATA(nid)->node_spanned_pages) ) { STAP_RETVALUE = nid; break; } %} // Return whether a page to be copied is a zero page. @__private30 function _IS_ZERO_PAGE:long(from:long, vaddr:long) %{ /* pure */ STAP_RETVALUE = (STAP_ARG_from == (long) ZERO_PAGE(STAP_ARG_vaddr)); %} /** * probe vm.write_shared - Attempts at writing to a shared page * * @name: name of the probe point * @address: the address of the shared write * * Context: * The context is the process attempting the write. * * Fires when a process attempts to write to a shared page. * If a copy is necessary, this will be followed by a * vm.write_shared_copy. */ probe vm.write_shared = kernel.function("do_wp_page") { name = "write_shared" address = @choose_defined($vmf->address,$address) } /** * probe vm.write_shared_copy - Page copy for shared page write * * @name: Name of the probe point * @address: The address of the shared write * @zero: boolean indicating whether it is a zero page * (can do a clear instead of a copy) * * Context: * The process attempting the write. * * Fires when a write to a shared page requires a page copy. This is * always preceded by a vm.write_shared. */ probe vm.write_shared_copy = kernel.function("cow_user_page") ?, kernel.function("copy_cow_page") ? { name = "write_shared_copy" if (@defined($va)) { address = $va zero = _IS_ZERO_PAGE($src, $va); } else { address = $address zero = _IS_ZERO_PAGE($from, $address); } } /** * probe vm.mmap - Fires when an mmap is requested * * @name: name of the probe point * @address: the requested address * @length: the length of the memory segment * * Context: * The process calling mmap. */ probe vm.mmap = kernel.function("vm_mmap") !, kernel.function("do_mmap_pgoff") !, kernel.function("do_mmap") ?, kernel.function("do_mmap2") ? { name = "mmap" address = $addr length = $len } /** * probe vm.munmap - Fires when an munmap is requested * * @name: name of the probe point * @address: the requested address * @length: the length of the memory segment * * Context: * The process calling munmap. */ probe vm.munmap = kernel.function("do_munmap") { name = "munmap" address = $start length = $len } /** * probe vm.brk - Fires when a brk is requested (i.e. the heap will be resized) * * @name: name of the probe point * @address: the requested address * @length: the length of the memory segment * * Context: * The process calling brk. */ probe vm.brk = kernel.function("do_brk") { name = "brk" address = $addr length = $len } /** * probe vm.oom_kill - Fires when a thread is selected for termination by the OOM killer * * @name: name of the probe point * @task: the task being killed * * Context: * The process that tried to consume excessive memory, and thus * triggered the OOM. */ probe vm.oom_kill = kernel.function("oom_kill_process") !, kernel.function("__oom_kill_task") { name = "oom_kill" if (@defined($p)) { task = $p } else { task = $oc->chosen } } @__private30 function GFP_KERNEL:long() { return @const("GFP_KERNEL") } @__private30 function __gfp_flag_str:string(gfp_flag:long) %{ long gfp_flag = STAP_ARG_gfp_flag; STAP_RETVALUE[0] = '\0'; /* Older kernels < 2.6.32 didn't have some of these GFP defines yet. */ #ifndef __GFP_DMA32 #define __GFP_DMA32 ((__force gfp_t)0x04u) #endif #ifndef GFP_DMA32 #define GFP_DMA32 __GFP_DMA32 #endif #ifndef __GFP_MOVABLE #define __GFP_MOVABLE ((__force gfp_t)0x08u) /* Page is movable */ #endif #ifndef GFP_ZONEMASK #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) #endif #ifndef __GFP_NOTRACK #ifdef CONFIG_KMEMCHECK #define __GFP_NOTRACK ((__force gfp_t)0x200000u) /* Don't track with kmemcheck */ #else #define __GFP_NOTRACK ((__force gfp_t)0) #endif #endif #ifndef __GFP_THISNODE #define __GFP_THISNODE ((__force gfp_t)0x40000u) #endif #ifndef __GFP_RECLAIMABLE #define __GFP_RECLAIMABLE ((__force gfp_t)0x80000u) #endif #ifndef __GFP_ZERO #define __GFP_ZERO ((__force gfp_t)0x8000u) #endif #ifndef __GFP_NOMEMALLOC #define __GFP_NOMEMALLOC ((__force gfp_t)0x10000u) #endif #ifndef __GFP_HARDWALL #define __GFP_HARDWALL ((__force gfp_t)0x20000u) #endif #ifndef GFP_TEMPORARY #define GFP_TEMPORARY (__GFP_WAIT | __GFP_IO | __GFP_FS | \ __GFP_RECLAIMABLE) #endif #ifndef GFP_HIGHUSER_MOVABLE #define GFP_HIGHUSER_MOVABLE (__GFP_WAIT | __GFP_IO | __GFP_FS | \ __GFP_HARDWALL | __GFP_HIGHMEM | \ __GFP_MOVABLE) #endif #ifndef GFP_THISNODE #ifdef CONFIG_NUMA #define GFP_THISNODE (__GFP_THISNODE | __GFP_NOWARN | __GFP_NORETRY) #else #define GFP_THISNODE ((__force gfp_t)0) #endif #endif /* Macro for GFP Bitmasks. */ /* The resulted GFP_FLAGS may be either single or concatenation of the multiple bitmasks. */ #define __GFP_BITMASKS(FLAG) if(gfp_flag & FLAG) { if(STAP_RETVALUE[0] != '\0') \ strlcat(STAP_RETVALUE, " | "#FLAG, MAXSTRINGLEN); \ else strlcat(STAP_RETVALUE, #FLAG, MAXSTRINGLEN); } /* Macro for Composite Flags. */ /* Each Composite GFP_FLAG is the combination of multiple bitmasks. */ #define __GFP_COMPOSITE_FLAG(FLAG) if(gfp_flag == FLAG) { \ strlcat(STAP_RETVALUE, #FLAG, MAXSTRINGLEN); return; } /* Composite GFP FLAGS of the BitMasks. */ __GFP_COMPOSITE_FLAG(GFP_ZONEMASK) __GFP_COMPOSITE_FLAG(GFP_ATOMIC) __GFP_COMPOSITE_FLAG(GFP_NOIO) __GFP_COMPOSITE_FLAG(GFP_NOFS) __GFP_COMPOSITE_FLAG(GFP_KERNEL) __GFP_COMPOSITE_FLAG(GFP_TEMPORARY) __GFP_COMPOSITE_FLAG(GFP_USER) __GFP_COMPOSITE_FLAG(GFP_HIGHUSER) __GFP_COMPOSITE_FLAG(GFP_HIGHUSER_MOVABLE) __GFP_COMPOSITE_FLAG(GFP_THISNODE) __GFP_COMPOSITE_FLAG(GFP_DMA) __GFP_COMPOSITE_FLAG(GFP_DMA32) /* GFP BitMasks */ __GFP_BITMASKS(__GFP_DMA) __GFP_BITMASKS(__GFP_HIGHMEM) __GFP_BITMASKS(__GFP_DMA32) __GFP_BITMASKS(__GFP_MOVABLE) __GFP_BITMASKS(__GFP_RECLAIMABLE) #ifdef __GFP_WAIT __GFP_BITMASKS(__GFP_WAIT) #endif __GFP_BITMASKS(__GFP_HIGH) __GFP_BITMASKS(__GFP_IO) __GFP_BITMASKS(__GFP_FS) #ifdef __GFP_COLD __GFP_BITMASKS(__GFP_COLD) #endif __GFP_BITMASKS(__GFP_NOWARN) #ifdef __GFP_RETRY_MAYFAIL __GFP_BITMASKS(__GFP_RETRY_MAYFAIL) #endif #ifdef __GFP_REPEAT __GFP_BITMASKS(__GFP_REPEAT) #endif __GFP_BITMASKS(__GFP_NOFAIL) #ifdef __GFP_NORETRY __GFP_BITMASKS(__GFP_NORETRY) #endif #ifdef __GFP_MEMALLOC __GFP_BITMASKS(__GFP_MEMALLOC) #endif __GFP_BITMASKS(__GFP_COMP) __GFP_BITMASKS(__GFP_ZERO) __GFP_BITMASKS(__GFP_NOMEMALLOC) __GFP_BITMASKS(__GFP_HARDWALL) __GFP_BITMASKS(__GFP_THISNODE) #ifdef ___GFP_ATOMIC __GFP_BITMASKS(__GFP_ATOMIC) #endif #ifdef ___GFP_ACCOUNT __GFP_BITMASKS(__GFP_ACCOUNT) #endif __GFP_BITMASKS(__GFP_NOTRACK) #ifdef ___GFP_DIRECT_RECLAIM __GFP_BITMASKS(__GFP_DIRECT_RECLAIM) #endif #ifdef ___GFP_WRITE __GFP_BITMASKS(__GFP_WRITE) #endif #ifdef ___GFP_KSWAPD_RECLAIM __GFP_BITMASKS(__GFP_KSWAPD_RECLAIM) #endif #ifdef ___GFP_NOLOCKDEP __GFP_BITMASKS(__GFP_NOLOCKDEP) #endif #undef __GFP_BITMASKS #undef __GFP_COMPOSITE_FLAG %} /* The Formal Parameters will be displayed if available, otherwise \ "0" or "unknown" will be displayed */ probe __vm.kmalloc.tp = kernel.trace("kmalloc") { call_site = $call_site caller_function = symname(call_site) bytes_req = $bytes_req bytes_alloc = $bytes_alloc gfp_flags = $gfp_flags gfp_flag_name = __gfp_flag_str($gfp_flags) ptr = $ptr } /* * It is unsafe to invoke __builtin_return_address() presently (to get * call_site for kprobe based probes) and that it can be improved * later when fix for bugs bz#6961 and bz#6580 is available. */ probe __vm.kmalloc.kp = kernel.function("kmem_cache_alloc_notrace").return !, kernel.function("kmem_cache_alloc").return { call_site = 0 caller_function = "unknown" // Note that 'bytes_req' could be wrong. By the time // kmem_cache_alloc* gets called the requested size could have // rounded up to the nearest cache alloc size. if (@defined(@entry($s))) { bytes_req = @entry($s->size) bytes_alloc = bytes_req } else if (@defined(@entry($cachep->buffer_size))) { bytes_req = @entry($cachep->buffer_size) bytes_alloc = bytes_req } else { bytes_req = @entry($cachep->objsize) bytes_alloc = bytes_req } if (@defined(@entry($gfpflags))) { gfp_flags = @entry($gfpflags) gfp_flag_name = __gfp_flag_str(gfp_flags) } else { gfp_flags = @entry($flags) gfp_flag_name = __gfp_flag_str(gfp_flags) } ptr = $return } /** * probe vm.kmalloc - Fires when kmalloc is requested * * @name: name of the probe point * @call_site: address of the kmemory function * @caller_function: name of the caller function * @bytes_req: requested Bytes * @bytes_alloc: allocated Bytes * @gfp_flags: type of kmemory to allocate * @gfp_flag_name: type of kmemory to allocate (in String format) * @ptr: pointer to the kmemory allocated */ probe vm.kmalloc = __vm.kmalloc.tp !, __vm.kmalloc.kp { name = "kmalloc" } probe __vm.kmem_cache_alloc.tp = kernel.trace("kmem_cache_alloc") { call_site = $call_site caller_function = symname(call_site) bytes_req = $bytes_req bytes_alloc = $bytes_alloc gfp_flags = $gfp_flags gfp_flag_name = __gfp_flag_str($gfp_flags) ptr = $ptr } probe __vm.kmem_cache_alloc.kp = kernel.function("kmem_cache_alloc").return { call_site = 0 caller_function = "unknown" // Note that 'bytes_req' could be wrong. By the time // kmem_cache_alloc* gets called the requested size could have // rounded up to the nearest cache alloc size. if (@defined(@entry($s))) { bytes_req = @entry($s->size) bytes_alloc = bytes_req } else if (@defined(@entry($cachep->buffer_size))) { bytes_req = @entry($cachep->buffer_size) bytes_alloc = bytes_req } else { bytes_req = @entry($cachep->objsize) bytes_alloc = bytes_req } if (@defined(@entry($gfpflags))) { gfp_flags = @entry($gfpflags) gfp_flag_name = __gfp_flag_str(gfp_flags) } else { gfp_flags = @entry($flags) gfp_flag_name = __gfp_flag_str(gfp_flags) } ptr = $return } /** * probe vm.kmem_cache_alloc - Fires when kmem_cache_alloc is requested * * @name: name of the probe point * @call_site: address of the function calling this kmemory function. * @caller_function: name of the caller function. * @bytes_req: requested Bytes * @bytes_alloc: allocated Bytes * @gfp_flags: type of kmemory to allocate * @gfp_flag_name: type of kmemory to allocate(in string format) * @ptr: pointer to the kmemory allocated */ probe vm.kmem_cache_alloc = __vm.kmem_cache_alloc.tp !, __vm.kmem_cache_alloc.kp { name = "kmem_cache_alloc" } probe __vm.kmalloc_node.tp = kernel.trace("kmalloc_node") ? { call_site = $call_site caller_function = symname(call_site) bytes_req = $bytes_req bytes_alloc = $bytes_alloc gfp_flags = $gfp_flags gfp_flag_name = __gfp_flag_str($gfp_flags) ptr = $ptr } probe __vm.kmalloc_node.kp = kernel.function("kmalloc_node").return ? { call_site = 0 caller_function = "unknown" bytes_req = @entry($size) bytes_alloc = bytes_req // pretend they are always the same # Unfortunately, on i686 f11 (2.6.29.4-167.fc11.i686.PAE), we # can't see the '$flags' argument (even though we can see the # '$size' argument above). Note that we can see the '$flags' # argument on x86_64 f11 (2.6.29.4-167.fc11.x86_64). So, the # best we can do here is just use 0 when $flags isn't defined. gfp_flags = @choose_defined(@entry($flags), 0) gfp_flag_name = __gfp_flag_str(@choose_defined(@entry($flags), 0)) ptr = $return } /** * probe vm.kmalloc_node - Fires when kmalloc_node is requested * * @name: name of the probe point * @call_site: address of the function caling this kmemory function * @caller_function: name of the caller function * @bytes_req: requested Bytes * @bytes_alloc: allocated Bytes * @gfp_flags: type of kmemory to allocate * @gfp_flag_name: type of kmemory to allocate(in string format) * @ptr: pointer to the kmemory allocated */ probe vm.kmalloc_node = __vm.kmalloc_node.tp !, __vm.kmalloc_node.kp ? { name = "kmalloc_node" } probe __vm.kmem_cache_alloc_node.tp = kernel.trace("kmem_cache_alloc_node") ? { call_site = $call_site caller_function = symname(call_site) bytes_req = $bytes_req bytes_alloc = $bytes_alloc gfp_flags = $gfp_flags gfp_flag_name = __gfp_flag_str($gfp_flags) ptr = $ptr } probe __vm.kmem_cache_alloc_node.kp = kernel.function("kmem_cache_alloc_node").return ? { call_site = 0 caller_function = "unknown" // Note that 'bytes_req' could be wrong. By the time // kmem_cache_alloc* gets called the requested size could have // rounded up to the nearest cache alloc size. if (@defined(@entry($s))) { bytes_req = @entry($s->size) bytes_alloc = bytes_req } else if (@defined(@entry($cachep->buffer_size))) { bytes_req = @entry($cachep->buffer_size) bytes_alloc = bytes_req } else { bytes_req = @entry($cachep->objsize) bytes_alloc = bytes_req } // kmem_cache_alloc_node() doesn't get a flags argument. But, // internally it uses GFP_KERNEL(). gfp_flags = GFP_KERNEL() gfp_flag_name = __gfp_flag_str(gfp_flags) ptr = $return } /** * probe vm.kmem_cache_alloc_node - Fires when kmem_cache_alloc_node is requested * * @name: name of the probe point * @call_site: address of the function calling this kmemory function * @caller_function: name of the caller function * @bytes_req: requested Bytes * @bytes_alloc: allocated Bytes * @gfp_flags: type of kmemory to allocate * @gfp_flag_name: type of kmemory to allocate(in string format) * @ptr: pointer to the kmemory allocated */ probe vm.kmem_cache_alloc_node = __vm.kmem_cache_alloc_node.tp !, __vm.kmem_cache_alloc_node.kp ? { name = "kmem_cache_alloc_node" } probe __vm.kfree.tp = kernel.trace("kfree") { call_site = $call_site caller_function = symname(call_site) ptr = $ptr } probe __vm.kfree.kp = kernel.function("kfree").return { call_site = 0 caller_function = "unknown" ptr = @entry(@choose_defined($x, $objp)) } /** * probe vm.kfree - Fires when kfree is requested * * @name: name of the probe point * @call_site: address of the function calling this kmemory function * @caller_function: name of the caller function. * @ptr: pointer to the kmemory allocated which is returned by kmalloc */ probe vm.kfree = __vm.kfree.tp !, __vm.kfree.kp { name = "kfree" } probe __vm.kmem_cache_free.tp = kernel.trace("kmem_cache_free") { call_site = $call_site caller_function = symname(call_site) ptr = $ptr } probe __vm.kmem_cache_free.kp = kernel.function("kmem_cache_free").return { call_site = 0 caller_function = "unknown" ptr = @entry(@choose_defined($x, $objp)) } /** * probe vm.kmem_cache_free - Fires when kmem_cache_free is requested * * @name: Name of the probe point * @call_site: Address of the function calling this kmemory function * @caller_function: Name of the caller function. * @ptr: Pointer to the kmemory allocated which is returned by kmem_cache */ probe vm.kmem_cache_free = __vm.kmem_cache_free.tp !, __vm.kmem_cache_free.kp { name = "kmem_cache_free" }